Character Degree Sums and Real Representations of Finite Classical Groups of Odd Characteristic
نویسندگان
چکیده
Let Fq be a finite field with q elements, where q is the power of an odd prime, and let GSp(2n, Fq) and GO±(2n, Fq) denote the symplectic and orthogonal groups of similitudes over Fq, respectively. We prove that every real-valued irreducible character of GSp(2n, Fq) or GO±(2n, Fq) is the character of a real representation, and we find the sum of the dimensions of the real representations of each of these groups. We also show that if G is a classical connected group defined over Fq with connected center, with dimension d and rank r, then the sum of the degrees of the irreducible characters of G(Fq) is bounded above by (q + 1)(d+r)/2. Finally, we show that if G is any connected reductive group defined over Fq, for any q, the sum of the degrees of the irreducible characters of G(Fq) is bounded below by q(d−r)/2(q − 1)r . We conjecture that this sum can always be bounded above by q(d−r)/2(q + 1)r .
منابع مشابه
Groups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملSpherical Functions for the Action of a Finite Unitary Group on a Finite Heisenberg Group
The action of the unitary group on the real Heisenberg group yields a Gelfand pair. The associated spherical functions are well known and have been computed independently by many authors. In this paper we develop a discrete counterpart to this story by replacing the real numbers by a finite field of odd characteristic. This produces a finite Gelfand pair whose spherical functions are computed e...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملON THE CHARACTERISTIC DEGREE OF FINITE GROUPS
In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...
متن کامل1 4 Se p 20 13 CHARACTER DEGREE SUMS OF FINITE GROUPS
We present some results on character degree sums in connection with several important characteristics of finite groups such as p-solvability, solvability, supersolvability, and nilpotency. Some of them strengthen known results in the literature.
متن کامل